skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Azodi, Christina_B"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Extensive transcriptional activity occurring in intergenic regions of genomes has raised the question whether intergenic transcription represents the activity of novel genes or noisy expression. To address this, we evaluated cross-species and post-duplication sequence and expression conservation of intergenic transcribed regions (ITRs) in four Poaceae species. Among 43,301 ITRs across the four species, 34,460 (80%) are species-specific. ITRs found across species tend to be more divergent in expression and have more recent duplicates compared to annotated genes. To assess if ITRs are functional (under selection), machine learning models were established inOryza sativa(rice) that could accurately distinguish between phenotype genes and pseudogenes (area under curve-receiver operating characteristic = 0.94). Based on the models, 584 (8%) and 4391 (61%) rice ITRs are classified as likely functional and nonfunctional with high confidence, respectively. ITRs with conserved expression and ancient retained duplicates, features that were not part of the model, are frequently classified as likely-functional, suggesting these characteristics could serve as pragmatic rules of thumb for identifying candidate sequences likely to be under selection. This study also provides a framework to identify novel genes using comparative transcriptomic data to improve genome annotation that is fundamental for connecting genotype to phenotype in crop and model systems. 
    more » « less